Modulating synaptic NMDA receptors
نویسندگان
چکیده
منابع مشابه
NMDA Receptors Mediate Synaptic Competition in Culture
BACKGROUND Activity through NMDA type glutamate receptors sculpts connectivity in the developing nervous system. This topic is typically studied in the visual system in vivo, where activity of inputs can be differentially regulated, but in which individual synapses are difficult to visualize and mechanisms governing synaptic competition can be difficult to ascertain. Here, we develop a model of...
متن کاملAstrocytic control of synaptic NMDA receptors.
Astrocytes express a wide range of G-protein coupled receptors that trigger release of intracellular Ca2+, including P2Y, bradykinin and protease activated receptors (PARs). By using the highly sensitive sniffer-patch technique, we demonstrate that the activation of P2Y receptors, bradykinin receptors and protease activated receptors all stimulate glutamate release from cultured or acutely diss...
متن کاملSynaptic NMDA receptors mediate hypoxic excitotoxic death.
Excessive NMDA receptor activation and excitotoxicity underlies pathology in many neuropsychiatric and neurological disorders, including hypoxia/ischemia. Thus, the development of effective therapeutics for these disorders demands a complete understanding of NMDA receptor (NMDAR) activation during excitotoxic insults. The extrasynaptic NMDAR hypothesis posits that synaptic NMDARs are neurotroph...
متن کاملRecruiting extrasynaptic NMDA receptors augments synaptic signaling.
N-Methyl-d-aspartate receptor (NMDAR) activation may promote cell survival or initiate cell death, with the outcome dependent on whether synaptic or extrasynaptic receptors are activated. Similarly, this differential activation has been proposed to govern the direction of plasticity. However, the physiological parameters necessary to activate extrasynaptic NMDARs in brain slices remain unknown....
متن کاملSAP102 mediates synaptic clearance of NMDA receptors.
Membrane-associated guanylate kinases (MAGUKs) are the major family of scaffolding proteins at the postsynaptic density. The PSD-MAGUK subfamily, which includes PSD-95, PSD-93, SAP97, and SAP102, is well accepted to be primarily involved in the synaptic anchoring of numerous proteins, including N-methyl-D-aspartate receptors (NMDARs). Notably, the synaptic targeting of NMDARs depends on the bin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neuropharmacology
سال: 2017
ISSN: 0028-3908
DOI: 10.1016/j.neuropharm.2016.08.023